Transformer la finance pour l’avenir

NRZ.Digital
0 0

Au cours du siècle dernier, la finance a gagné en sophistication, en précision et en importance – cependant, le modèle de fonctionnement de la fonction finance a étonnamment peu changé. Le moment est venu pour la finance, comme de nombreuses fonctions d’entreprise, d’adopter un état d’esprit plus agile axé sur l’aide à la décision, la croissance et la rentabilité. En tirant parti des technologies d’aujourd’hui telles que l’intelligence artificielle, l’automatisation et l’apprentissage automatique, la finance est en mesure de conduire le changement numérique, de diriger la création de valeur d’entreprise et d’améliorer les performances globales.

Selon une recherche menée par le McKinsey Global Institute, 40% des activités financières de base – y compris la gestion des revenus, les décaissements, la comptabilité et les opérations – peuvent être entièrement automatisées, et 17% supplémentaires peuvent être partiellement automatisées. L’automatisation de fonctions comme celles-ci permettra aux équipes financières de passer plus de temps sur des tâches de grande valeur, telles que la génération d’informations, la gestion des liquidités et des dépenses, et le suivi des investissements. Tout cela nécessite une expertise et une touche humaine, ainsi que le bon ensemble d’outils, d’approches et de capacités telles que la planification et les prévisions dynamiques, les collaborations interfonctionnelles, les tableaux de bord à faible latence et la surveillance des KPI.

Une plus grande automatisation et une utilisation accrue de l’IA et de l’apprentissage automatique généreront vitesse et flexibilité pour les équipes financières, accélérant la prise de décision organisationnelle et améliorant la résilience des entreprises.

L’évolution de la finance

L’évolution récente de la fonction financière a été motivée par le besoin de plus de transparence, de visibilité et d’exactitude des données – et la pandémie mondiale a servi de catalyseur à l’adoption accrue des outils numériques par les équipes financières et dans toute l’entreprise.

Les équipes financières de pointe passent à davantage d’outils de visualisation de données basés sur l’IA, associés à des capacités d’automatisation pour générer des rapports commerciaux clairs, opportuns et exploitables. Cela génère des informations plus rapides pour les utilisateurs finaux, améliore la productivité, réduit le temps consacré à la collecte de données et favorise des discussions commerciales plus ciblées (et plus rapides). La finance basée sur l’IA stimule les performances de l’entreprise.

Les éléments constitutifs de la transformation de la finance

L’avenir de la finance sera plus numérique et beaucoup plus automatisé. Cela nécessite deux choses: Premièrement, les responsables financiers doivent créer une culture dans laquelle les équipes passent plus de temps à analyser les données et à faciliter la prise de décision plutôt que de simplement collecter des données. Deuxièmement, ils devraient envisager de déployer une solution d’intelligence artificielle intégrée qui tire parti de l’agrégation de données, de la visualisation des données, de l’automatisation du flux de travail, des rapports KPI, de la simulation de scénarios et de l’analyse avancée.

Une solution basée sur l’IA peut activer des capacités de surveillance en temps réel pour les processus financiers tels que la budgétisation, les prévisions et la gestion du fonds de roulement – et générer automatiquement des signaux d’avertissement basés sur des informations. Les changements culturels et technologiques doivent refléter la vision stratégique et les objectifs à long terme de l’entreprise.

Budgétisation et prévision: Ces processus sont complexes et ancrés dans des pratiques commerciales héritées qui répondent à des questions telles que «Comment allons-nous depuis le début de l’année?» ou « Quel est notre flux de trésorerie d’exploitation attendu pour les trois prochaines années? » Dans une fonction financière plus numérique et plus automatisée, la budgétisation et les prévisions devraient être repensées pour intégrer flexibilité et intelligence. Cela nécessite inévitablement de faire tomber les barrières qui existent entre les finances, les opérations et la stratégie. Et cela permettra à l’entreprise de générer des informations pertinentes et de répondre à des questions telles que «Comment allons-nous aujourd’hui?» et « Quels indicateurs pouvons-nous utiliser pour suivre nos investissements maintenant? »

L’équipe financière doit être le catalyseur qui aide à la planification holistique et continue, ce qui conduit à une augmentation de la visibilité et à une amélioration de la prise de décision. Pour atteindre ces résultats, ce type de planification doit également inclure des capacités de modélisation qui peuvent tester diverses hypothèses englobant les changements dans les revenus ou les coûts des marchandises vendues d’un point de vue régional, du portefeuille de produits, du client et / ou du canal de vente.

Voici un exemple d’automatisation en action dans le domaine de la finance: une entreprise mondiale de vêtements de plus de 5 milliards de dollars souhaitait une vue microscopique des flux de trésorerie pour planifier et mesurer efficacement les performances de l’une de ses unités commerciales. En collaboration avec ce leader de l’industrie, Wipro a créé une solution de façonnage des revenus qui prévoit avec précision les revenus quatre trimestres à l’avance tout en fournissant des inférences impartiales et fondées sur des preuves et en suggérant des interventions – avec des simulations pour illustrer comment les résultats changeraient. Cela a tellement amélioré la prise de décision de l’organisation que les utilisateurs finaux de planification et d’analyse financières de l’entreprise ont adopté le modèle au cours des six premiers mois. Le projet a généré la confiance des parties prenantes qu’un modèle d’IA pouvait prévoir les revenus avec plus de précision que les professionnels de la finance qui avaient une connaissance approfondie de l’industrie du vêtement.

Gestion du fonds de roulement: La gestion de la trésorerie dont une entreprise a besoin pour ses opérations quotidiennes est complexe et inefficace en raison des nuances locales et des équipes mal alignées. L’analyse du fonds de roulement doit tenir compte des créances, des dettes et des stocks. Les modèles de fonds de roulement de nouvelle génération nécessitent un processus de gestion de la trésorerie plus efficace, alimenté par des solutions numériques avancées qui tirent parti de l’apprentissage automatique et de l’automatisation. Wipro aide les entreprises à créer des cadres de fonds de roulement améliorés par l’IA avec une approche hybride qui combine des méthodologies, des analyses avancées et une exploration de processus pour offrir des informations plus rapides et plus granulaires avec moins d’effort.

Par exemple, un fabricant européen d’automatisation et de robotique a connu un processus de facturation et de collecte fragmenté qui s’est avéré être un obstacle à sa croissance future. Pour relever ce défi, Wipro a aidé à concevoir une feuille de route pour le fonds de roulement et à adopter des pratiques de pointe pour le processus de commande-encaissement. Le recouvrement des comptes clients s’est considérablement amélioré grâce à l’utilisation d’algorithmes d’apprentissage automatique pour recommander les meilleures stratégies de recouvrement au niveau du client / de la transaction. De plus, des rappels automatisés, des factures plus précises et une gestion plus rapide des litiges ont aidé le fabricant à réduire son fonds de roulement.

Dans un autre cas, l’une des plus grandes entreprises de soins aux consommateurs au monde a eu du mal à naviguer efficacement dans un paysage compliqué de la source au paiement, caractérisé par une large base de fournisseurs, des contrats isolés, des conditions de paiement ambiguës et des paiements non structurés. À son tour, Wipro a contribué à la co-conception et à la mise à l’échelle des processus d’approvisionnement mondiaux pour synchroniser les contrats, les accords d’approvisionnement et les conditions de paiement. La qualité de la prise de décision s’est améliorée grâce à des informations plus claires, plus riches et plus rapides à partir d’ensembles de données organisés, conduisant à des paiements rapides et efficaces aux partenaires.

L’intelligence artificielle dans le parcours de la transformation financière

Alors, comment les responsables financiers devraient-ils commencer à mettre en œuvre l’IA dans le cadre du parcours de transformation financière? Cela peut sembler intimidant: l’effort nécessite une solution d’IA assimilée qui combine des capacités cognitives, de big data, d’apprentissage automatique et d’automatisation sous un même toit. Une approche étape par étape peut aider.

Consolidation des données est la première étape pour tirer parti de l’IA pour transformer la fonction financière et la mettre en place pour un succès à long terme. La plupart des organisations disposent d’au moins un système de planification des ressources d’entreprise (ERP) qui suit les commandes et les transactions, les factures, les paiements, les détails de l’entrepôt, les informations sur les centres de coûts, etc. En règle générale, les entreprises utilisent plusieurs systèmes indépendants pour suivre des détails spécifiques (tels que le rebut de la gamme de produits) pour lesquels les systèmes ERP ne sont pas prévus pour tenir compte. La consolidation et l’harmonisation des sources de données facilitent la collecte de renseignements importants qui sont autrement difficiles à exploiter pour la planification et l’analyse financières. Si la consolidation des données peut être pénible, lente et laborieuse, elle offre de réels avantages.

La prochaine étape de l’adoption d’une solution d’IA consiste à entraîner l’algorithme pour identifier les relations entre les ensembles de données créés lors de la consolidation des données. Un algorithme formé permet aux responsables financiers de modéliser différents scénarios via une modélisation prédictive et des tests de résistance, et les aide à comprendre l’impact des externalités sur l’entreprise d’un point de vue financier et opérationnel.

De plus, les entreprises doivent définir des indicateurs de performance clés clairs, granulaires et mesurables (KPI) pour tester les résultats et les pouvoirs prédictifs de l’algorithme. En fin de compte, les KPI rendent l’algorithme plus transparent et justifient éventuellement une collaboration interfonctionnelle en fonction des informations générées.

La direction financière d’une organisation a le droit et la responsabilité de se renseigner sur la manière dont les opérations quotidiennes d’une entreprise génèrent de la valeur. Avec la mise en œuvre de l’IA, les responsables financiers peuvent non seulement synthétiser ces informations plus rapidement, mais également aider à prendre des décisions stratégiques en utilisant des modèles prédictifs basés sur l’IA pour libérer leur potentiel.

Intelligence artificielle – Real Insights

La pression pour générer une croissance du chiffre d’affaires, une optimisation des coûts et un alignement avec la stratégie commerciale ne fera que s’intensifier – et exige que la fonction financière considère une approche de pointe technologiquement avancée. Cette approche est ici aujourd’hui sous forme d’automatisation et d’intelligence artificielle. En tirant parti de l’IA dans le cadre de la transformation financière, les organisations peuvent développer des rapports plus précis et en temps réel, augmenter la précision des prévisions, optimiser l’utilisation des ressources et minimiser les interventions manuelles. Grâce à l’adoption et à l’exécution d’une vision améliorée par l’IA, soutenue par la création d’une nouvelle culture axée sur les connaissances, les organisations peuvent se mettre sur la voie de l’épanouissement et de la prospérité pour les années à venir.

Les auteurs souhaitent remercier Amit Jain, consultant principal de la pratique Intelligent Business Re-Imagination de Wipro Digital, pour sa contribution à cet article.


Happy
Happy
0
Sad
Sad
0
Excited
Excited
0
Sleppy
Sleppy
0
Angry
Angry
0
Surprise
Surprise
0

Average Rating

5 Star
0%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%

Laisser un commentaire

Next Post

Pourquoi la migration Odoo est cruciale et comment le faire de manière transparente

L’importance de la migration Odoo et comment le faire? Odoo est un logiciel ERP open source qui comprend une suite intégrée de modules métier tels que le commerce électronique, la comptabilité, la gestion d’entrepôt, la gestion de projet, la gestion financière, la gestion de la relation client (CRM), la fabrication […]

Abonnez-vous maintenant